



# Learning with Instance-Dependent Label Noise: A Sample Sieve Approach

Hao Cheng\*§, Zhaowei Zhu\*†, (\*Equal contributions)
Xingyu Li†, Yifei Gong§, Xing Sun§, and Yang Liu†

†University of California, Santa Cruz, {zwzhu,xli279,yangliu}@ucsc.edu §Tencent YouTu Lab, {louischeng,yifeigong,winfredsun}@tencent.com

# Paper & Code:



# Motivation



## Observation:

Label noise reduces the confidence of predictions

#### Our idea:

Encourage **confident** prediction to remove corrupted examples

# Problems & Solutions (Overview)

One-sentence summary: A dynamic sample sieve with theoretical guarantees to avoid overfitting to instance-dependent label noise.

#### **Problems:**

- 1. Label noise  $(X,Y) \to \mathsf{Wrong}$  correlation patterns
- 2. Expensive human-efforts to reduce label noise

#### **Challenges:**

- 1. Unknown noise rates  $\mathbb{P}(\widetilde{Y}|Y,X)$
- 2. Instance-dependent label noise  $\mathbb{P}(\widetilde{Y}|Y,X) \neq \mathbb{P}(\widetilde{Y}|Y)$ , while most existing works [1-3] assume feature independency:  $\mathbb{P}(\widetilde{Y}|Y,X) = \mathbb{P}(\widetilde{Y}|Y)$
- 3. Loss-correction/reweighting [1-3]: Hard to estimate  $\mathbb{P}(\widetilde{Y}|Y,X), \forall X$

# Solutions: COnfidence Regularized Sample Sieve (CORES<sup>2</sup>)

- 1. Confidence regularizer (learn clean distributions) CR
- 2. Sample sieve (separate clean/corrupted examples)  $CORES^2$
- 3. Regular training (sieved clean examples) + Consistency training (features of sieved corrupted examples)  $CORES^{2*}$

# **Confidence Regularizer**

**Definition:**  $\ell_{\mathsf{CR}}(f(x_n)) := -\beta \cdot \mathbb{E}_{\mathcal{D}_{\widetilde{Y} \mid \widetilde{D}}}[\ell(f(x_n), \widetilde{Y})]$ 

Binary Example  $\{0,1\}$ :

- Cross-Entropy loss
- $\bullet \mathbb{P}(\widetilde{Y} = 0) = \mathbb{P}(\widetilde{Y} = 1) = \frac{1}{2}$
- $ullet p:=f_{x_n}[0]$ , eta=1
- $\ell_{\mathsf{CR}}(f(x_n)) = \frac{1}{2}(\ln p + \ln(1-p))$
- Confident predictions give small loss:  $p \approx 0$  or  $p \approx 1 \rightarrow \ell_{CR}(f(x_n)) \rightarrow -\infty$
- Unconfident predictions give large loss  $\rightarrow p \approx 0.5 \rightarrow \ell_{\text{CR}}(f(x_n)) \rightarrow$  maximum



Comparison to entropy regularizer ER:  $\ell_{\mathsf{ER}}(f(x_n)) = -\frac{1}{2}(p\ln p + (1-p)) \ln(1-p)$ 



CR helps: 1. Make confident predictions; 2. Learn clean distributions

# **Dynamic Sample Sieve**

# Experiments (CIFAR-10 with instance-dependent label noise)

# Loss distributions:

CE sieve: dynamic sample sieve without CR.

F-scores:



See our paper for more results of  $CORES^2$  and  $CORES^{2\star}$  on different noisy datasets

# Confidence Regularized Sample Sieve $\min_{\substack{f \in \mathcal{F}, \\ \boldsymbol{v} \in \{0,1\}^N}} \sum_{n \in [N]} v_n \left[ \ell(f(x_n), \tilde{y}_n) + \ell_{\mathsf{CR}}(f(x_n)) - \alpha_n \right]$ s.t. $\ell_{\mathsf{CR}}(f(x_n)) := -\beta \cdot \mathbb{E}_{\mathcal{D}_{\widetilde{Y}|\widetilde{D}}} \ell(f(x_n), \widetilde{Y}),$ $\alpha_n := \frac{1}{K} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \in \mathbb{Z}}} \ell(\bar{f}(x_n), \tilde{y}) + \ell_{\mathsf{CR}}(\bar{f}(x_n)).$



Green circles: clean examples

Red hexagons: corrupted examples

- $v_n \in \{0, 1\}$ : whether example n is clean  $(v_n = 1)$  or not  $(v_n = 0)$ ;
- $\alpha_n$ : aperture of a sieve, controls which example should be sieved out;
- ullet f: copy of f and does not contribute to the back-propagation.

#### Theoretical Guarantee

### Theorem: CORES<sup>2</sup> sieves out the corrupted examples:

- When the model prediction on  $x_n$  is better than  $\it random \it guess$ , clean examples will not be wrongly identified as being corrupted
- When:  $Y = Y^*$  (clean labels are Bayes optimal),  $T_{ii}(X) T_{ij}(X) > 0$  (informative), with infinite model capacity and sufficiently many examples, all the sieved clean examples are effectively clean.

# Main steps of the proof:

- 1. Decoupling the expected CR-regularized CE loss: noisy loss with CR = clean loss + label shift + noise effect  $(\beta)$
- 2. **CR** helps learn the clean distribution: noise effect can be *canceled* or *reversed* by proper  $\beta$
- 3. Proper setup of threshold  $\alpha$

#### Relevant Works

- [1] N. Natarajan, et al. "Learning with noisy labels." NeurlPS'13.
- [2] T. Liu & D. Tao. "Classification with noisy labels by importance reweighting." TPAMI'15.
- [3] G. Patrini, et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR'17.

#### Related other works from our lab

- Peer loss functions: learning from noisy labels without knowing noise rates, ICML'20
- ullet CE o f-divergence: When optimizing f-divergence is robust with label noise, ICLR'21
- High-order statistics: A second-order approach to learning with instance-dependent label noise, CVPR'21 (oral)

**Acknowledgement**: partially supported by the National Science Foundation (NSF) under grant IIS-2007951 and the Office of Naval Research under grant N00014-20-1-22.