

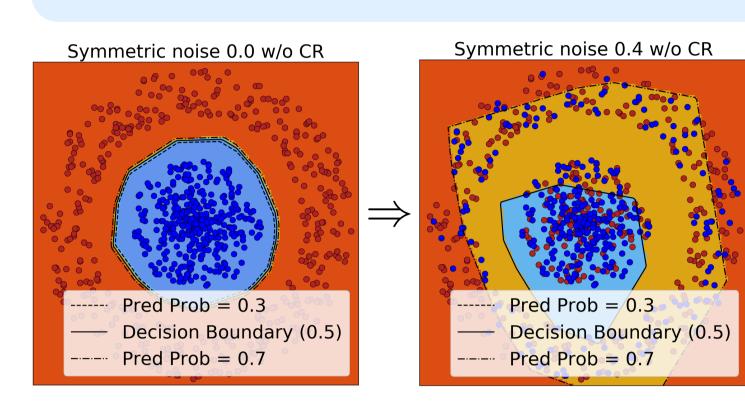
Learning with Instance-Dependent Label Noise: A Sample Sieve Approach

Hao Cheng*§, Zhaowei Zhu*†, (*Equal contributions)
Xingyu Li†, Yifei Gong§, Xing Sun§, and Yang Liu†

†University of California, Santa Cruz, {zwzhu,xli279,yangliu}@ucsc.edu §Tencent YouTu Lab, {louischeng,yifeigong,winfredsun}@tencent.com

Paper & Code:

Motivation



Observation:

Label noise reduces the confidence of predictions

Our idea:

Encourage **confident** prediction to remove corrupted examples

Problems & Solutions (Overview)

One-sentence summary: A dynamic sample sieve with theoretical guarantees to avoid overfitting to instance-dependent label noise.

Problems:

- 1. Label noise $(X,Y) \to \mathsf{Wrong}$ correlation patterns
- 2. Expensive human-efforts to reduce label noise

Challenges:

- 1. Unknown noise rates $\mathbb{P}(\widetilde{Y}|Y,X)$
- 2. Instance-dependent label noise $\mathbb{P}(\widetilde{Y}|Y,X) \neq \mathbb{P}(\widetilde{Y}|Y)$, while most existing works [1-3] assume feature independency: $\mathbb{P}(\widetilde{Y}|Y,X) = \mathbb{P}(\widetilde{Y}|Y)$
- 3. Loss-correction/reweighting [1-3]: Hard to estimate $\mathbb{P}(\widetilde{Y}|Y,X), \forall X$

Solutions: COnfidence Regularized Sample Sieve (CORES²)

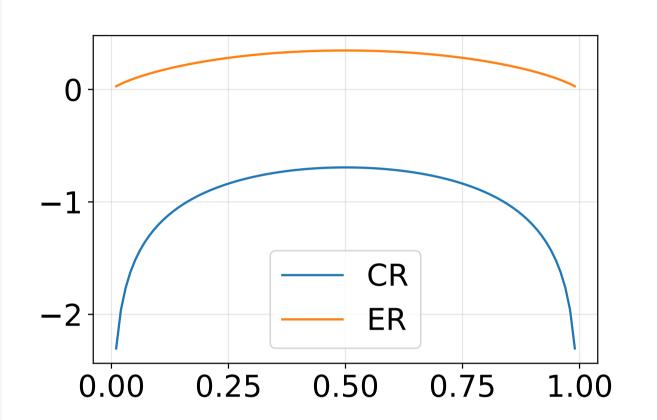
- 1. Confidence regularizer (learn clean distributions) CR
- 2. Sample sieve (separate clean/corrupted examples) $CORES^2$
- 3. Regular training (sieved clean examples) + Consistency training (features of sieved corrupted examples) $CORES^{2*}$

Confidence Regularizer

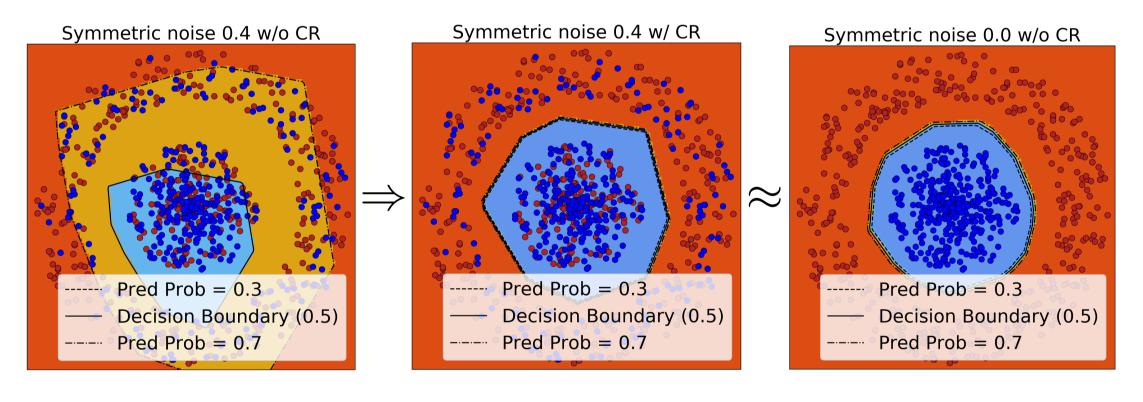
Definition: $\ell_{\mathsf{CR}}(f(x_n)) := -\beta \cdot \mathbb{E}_{\mathcal{D}_{\widetilde{Y} \mid \widetilde{D}}}[\ell(f(x_n), \widetilde{Y})]$

Binary Example $\{0,1\}$:

- Cross-Entropy loss
- $\bullet \mathbb{P}(\widetilde{Y} = 0) = \mathbb{P}(\widetilde{Y} = 1) = \frac{1}{2}$
- $ullet p:=f_{x_n}[0]$, eta=1
- $\ell_{\mathsf{CR}}(f(x_n)) = \frac{1}{2}(\ln p + \ln(1-p))$
- Confident predictions give small loss: $p \approx 0$ or $p \approx 1 \rightarrow \ell_{CR}(f(x_n)) \rightarrow -\infty$
- Unconfident predictions give large loss $\rightarrow p \approx 0.5 \rightarrow \ell_{\text{CR}}(f(x_n)) \rightarrow$ maximum



Comparison to entropy regularizer ER: $\ell_{\mathsf{ER}}(f(x_n)) = -\frac{1}{2}(p\ln p + (1-p)) \ln(1-p)$



CR helps: 1. Make confident predictions; 2. Learn clean distributions

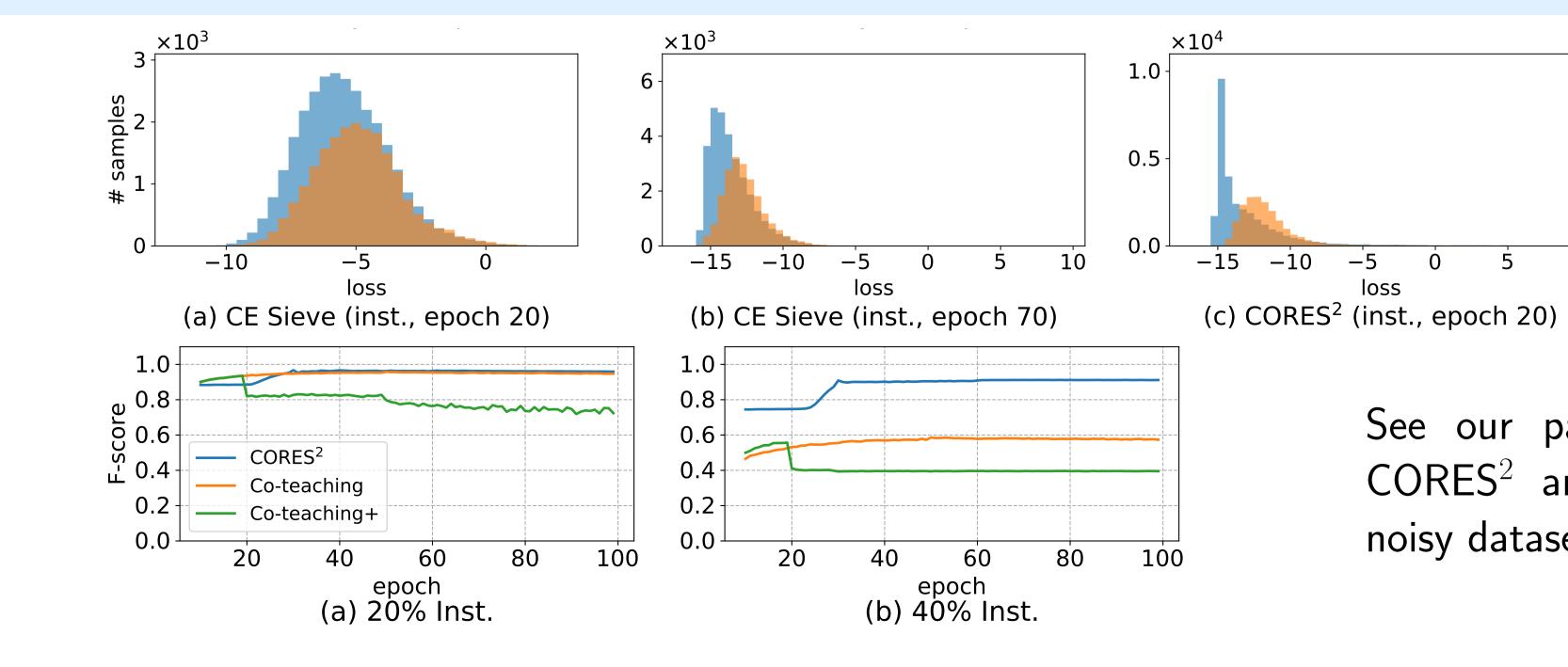
Dynamic Sample Sieve

Experiments (CIFAR-10 with instance-dependent label noise)

Loss distributions:

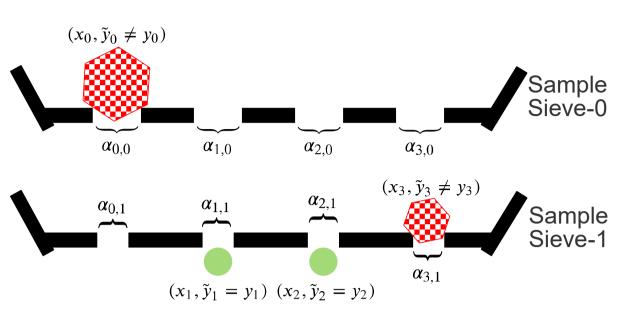
CE sieve: dynamic sample sieve without CR.

F-scores:



See our paper for more results of $CORES^2$ and $CORES^{2\star}$ on different noisy datasets

Confidence Regularized Sample Sieve $\min_{\substack{f \in \mathcal{F}, \\ \boldsymbol{v} \in \{0,1\}^N}} \sum_{n \in [N]} v_n \left[\ell(f(x_n), \tilde{y}_n) + \ell_{\mathsf{CR}}(f(x_n)) - \alpha_n \right]$ s.t. $\ell_{\mathsf{CR}}(f(x_n)) := -\beta \cdot \mathbb{E}_{\mathcal{D}_{\widetilde{Y}|\widetilde{D}}} \ell(f(x_n), \widetilde{Y}),$ $\alpha_n := \frac{1}{K} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \in \mathbb{Z}}} \ell(\bar{f}(x_n), \tilde{y}) + \ell_{\mathsf{CR}}(\bar{f}(x_n)).$



Green circles: clean examples

Red hexagons: corrupted examples

- $v_n \in \{0, 1\}$: whether example n is clean $(v_n = 1)$ or not $(v_n = 0)$;
- α_n : aperture of a sieve, controls which example should be sieved out;
- ullet f: copy of f and does not contribute to the back-propagation.

Theoretical Guarantee

Theorem: CORES² sieves out the corrupted examples:

- When the model prediction on x_n is better than $\it random \it guess$, clean examples will not be wrongly identified as being corrupted
- When: $Y = Y^*$ (clean labels are Bayes optimal), $T_{ii}(X) T_{ij}(X) > 0$ (informative), with infinite model capacity and sufficiently many examples, all the sieved clean examples are effectively clean.

Main steps of the proof:

- 1. Decoupling the expected CR-regularized CE loss: noisy loss with CR = clean loss + label shift + noise effect (β)
- 2. **CR** helps learn the clean distribution: noise effect can be *canceled* or *reversed* by proper β
- 3. Proper setup of threshold α

Relevant Works

- [1] N. Natarajan, et al. "Learning with noisy labels." NeurlPS'13.
- [2] T. Liu & D. Tao. "Classification with noisy labels by importance reweighting." TPAMI'15.
- [3] G. Patrini, et al. "Making deep neural networks robust to label noise: A loss correction approach." CVPR'17.

Related other works from our lab

- Peer loss functions: learning from noisy labels without knowing noise rates, ICML'20
- ullet CE o f-divergence: When optimizing f-divergence is robust with label noise, ICLR'21
- High-order statistics: A second-order approach to learning with instance-dependent label noise, CVPR'21 (oral)

Acknowledgement: partially supported by the National Science Foundation (NSF) under grant IIS-2007951 and the Office of Naval Research under grant N00014-20-1-22.