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Motivation

Symmetric noise 0.0 w/o CR Symmetric noise 0.4 w/o CR

Observation:
Label
dence of predictions

Our idea:

Encourage confident prediction

noise reduces the confi-
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to remove corrupted examples

Problems & Solutions (Overview)

One-sentence summary: A dynamic sample sieve with theoretical
guarantees to avoid overfitting to instance-dependent label noise.
Problems:

1. Label noise (X, }7) — Wrong correlation patterns

2. Expensive human-efforts to reduce label noise
Challenges: N
1. Unknown noise rates P(Y|Y, X)

2. Instance-dependent label noise P(Y|Y, X) # P(Y|Y), while most ex-
isting works [1-3] assume feature independency: P(Y]Y, X) = P(Y|Y)

3. Loss-correction /reweighting [1-3]: Hard to estimate P(Y'|Y, X), VX

Solutions: COnfidence Regularized Sample Sieve (CORES?)

1. Confidence regularizer (learn clean distributions) - CR
2.Sample sieve (separate clean/corrupted examples) - CORES?

3. Regular training (sieved clean examples) + Consistency training (fea-
tures of sieved corrupted examples) - CORES™
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Confidence Regularizer

Cer(f(n)) =

Definition:

Binary Example {0, 1}:

—f - Ep,  [€(f (zn), Y)]

e Cross-Entropy loss
PY =0)=PY =1) =1 o
.p = fxn[0]1 6 — 1

— 1
o ler(f(2,)) = H(inp+In(1 - p)) 1T
e Confident predictions give small _5. R
oss: p ~ Qorp = 1= 0.00 025 0.50 0.75 1.00

ler(f(2n)) = —o0

e Unconfident predictions give large
loss — p ~ 0.5 = Ler(f(x))) —
maximum

p)In(1 —p))
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Comparison to entropy regularizer

ER: KER(f(ZEn)) — —%(p Inp+ (1 —

CR helps: 1. Make confident predictions; 2. Learn clean distributions

Dynamic Sample Sieve

Experiments (CIFAR-10 with instance-dependent label noise)
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Learning with Instance-Dependent Label Noise:
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Confidence Regularized Sample Sieve
min
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. clean examples
Red hexagons: corrupted examples

ov, € {0,1}: whether example n is clean (v,, = 1) or not (v, = 0);
e «v,,. aperture of a sieve, controls which example should be sieved out;

e f: copy of f and does not contribute to the back-propagation.

Theoretical Guarantee

Theorem: CORES?® sieves out the corrupted examples:

- When the model prediction on x,, is better than random guess, clean
examples will not be wrongly identified as being corrupted

- When: Y = Y™ (clean labels are Bayes optimal), T;;(X ) — T;;(X) > 0
(informative), with infinite model capacity and sufficiently many exam-
ples, all the sieved clean examples are effectively clean.

Main steps of the proof:
1. Decoupling the expected CR-regularized CE loss:
noisy loss with CR = clean loss + label shift + noise effect ()

2. CR helps learn the clean distribution:
noise effect can be canceled or reversed by proper (3

3. Proper setup of threshold o
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